Research Paper

Comparative leaf proteomic profiling of salt-treated natural variants of Imperata cylindrica

Yun-Jhih Shih, Hui-Chun Chang, Min-Chieh Tsai, Ting-Ying Wu, Tai-Chung Wu, Ping Kao, Wen-Yuan Kao and Ing-Feng Chang

Published on: 13 June 2018

DOI: 10.6165/tai.2018.63.171

PDF Download pdf

2018 vol.63 no.2 pp.171-182



Abbasi, F.M. and S. Komatsu. 2004. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4(7): 2072-2081.
DOI: 10.1002/pmic.200300741View ArticleGoogle Scholar

Aghaei, K., A.A. Ehsanpour and S. Komatsu. 2008. Proteome analysis of potato under salt stress. J. Proteome Res. 7(11): 4858-4868.
DOI: 10.1021/pr800460yView ArticleGoogle Scholar

Andjelkovic, V. and R. Thompson. 2006. Changes in gene expression in maize kernel in response to water and salt stress. Plant Cell Rep. 25(1): 71-79.
DOI: 10.1007/s00299-005-0037-xView ArticleGoogle Scholar

Aneeta, N. Sanan-Mishra, N. Tuteja and S. Kumar Sopory. 2002. Salinity- and ABA-induced up-regulation and light-mediated modulation of mRNA encoding glycine-rich RNA-binding protein from Sorghum bicolor. Biochem. Biophys. Res. Commun. 296(5): 1063-1068.
DOI: 10.1016/S0006-291X(02)02050-8View ArticleGoogle Scholar

Arruda, S.C., S. Barbosa Hde, R.A. Azevedo and M.A. Arruda. 2011. Two-dimensional difference gel electrophoresis applied for analytical proteomics: Fundamentals and applications to the study of plant proteomics. Analyst 136(20): 4119-4126.
DOI: 10.1039/c1an15513jView ArticleGoogle Scholar

Askari, H., J. Edqvist, M. Hajheidari, M. Kafi and G.H. Salekdeh. 2006. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6(8): 2542-2554.
DOI: 10.1002/pmic.200500328View ArticleGoogle Scholar

Bandehagh, A., G.H. Salekdeh, M. Toorchi, A. Mohammadi and S. Komatsu. 2011. Comparative proteomic analysis of canola leaves under salinity stress. Proteomics 11(10): 1965-1975.
DOI: 10.1002/pmic.201000564View ArticleGoogle Scholar

Bose, J., A. Rodrigo-Moreno and S. Shabala. 2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65(5): 1241-1257.
DOI: 10.1093/jxb/ert430View ArticleGoogle Scholar

Bricker, T.M., J.L. Roose, R.D. Fagerlund, L.K. Frankel and J.J. Eaton-Rye. 2012. The extrinsic proteins of photosystem II. Biochim. Biophys. Acta 1817(1): 121-142.
DOI: 10.1016/j.bbabio.2011.07.006View ArticleGoogle Scholar

Bromham, L. and T.H. Bennett. 2014. Salt tolerance evolves more frequently in C4 grass lineages. J. Evol. Biol. 27(3): 653-659.
DOI: 10.1111/jeb.12320View ArticleGoogle Scholar

Buchanan, C.D., S. Lim, R.A. Salzman, I. Kagiampakis, D.T. Morishige, B.D. Weers, R.R. Klein, L.H. Pratt, M. M. Cordonnier-Pratt, P.E. Klein and J.E. Mullet. 2005. Sorghum bicolor's transcriptome response to dehydration, high salinity and ABA. Plant Mol. Biol. 58(5): 699-720.
DOI: 10.1007/s11103-005-7876-2View ArticleGoogle Scholar

Chang, I.F. 2008. Ecotypic variation of a medicinal plant Imperata cylindrica populations in Taiwan: Mass spectrometry-based proteomic evidence. J. Med. Plants Res. 2: 71-76.

Chang, I.F. and C.H. Chou. 2006. Ecotypic variation of Imperata cylindrica populations in Taiwan: II. Physiological and biochemical evidence. Bot. Stud. 47: 175-184.

Cheng, K.T. and C.H. Chou. 1997a. Ecotypic variation of Imperata cylindrica populations in Taiwan: I. Morphological and molecular evidences. Bot. Bull. Acad. Sinica 38: 215-223.

Cheng, K.T. and C.H. Chou. 1997b. Specific RAPD Markers of Imperata cylindrica populations in Taiwan. J. Genet. Mol. Biol. 8(3): 41-54.
DOI: 10.30047/JGMB.199709.0002View ArticleGoogle Scholar

Chiang, Y. C., T.Y. Chiang, I.F. Chang and C.H. Chou. 1998. Sequence announcement: rDNA IGS of Imperata cylindria (L.) Beauv. var. major (Ness) C E Hubb. Plant Mol. Biol. 39: 391-392.

de Abreu, C.E., S. Ara?jo Gdos A.C. Monteiro-Moreira, J. H. Costa, B. Leite Hde, F. B. Moreno, J.T. Prisco and E. Gomes-Filho. 2014. Proteomic analysis of salt stress and recovery in leaves of Vigna unguiculate cultivars differing in salt tolerance. Plant Cell Rep. 33(8): 1289-1306.
DOI: 10.1007/s00299-014-1616-5View ArticleGoogle Scholar

Gao, L., X. Yan, X. Li, G. Guo, Y. Hu, W. Ma and Y. Yan. 2011. Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistry 72(10): 1180-1191.
DOI: 10.1016/j.phytochem.2010.12.008View ArticleGoogle Scholar

Guan, Q., X. Liao, M. He, X. Li, Z. Wang, H. Ma, S. Yu and S. Liu. 2017. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3stress. PlosOne 12(10): e0186052
DOI: 10.1371/journal.pone.0186052View ArticleGoogle Scholar

Hern?ndez, J.A., E. Olmos, F.J. Corpas, F. Sevilla and L.A. del R?o. 1995. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105(2): 151-167.
DOI: 10.1016/0168-9452(94)04047-8View ArticleGoogle Scholar

Holm, L.G., D.L. Plucknett, J.V. Pancho and J.P. Herberger. 1977. The world's worst weeds: Distribution and biology. University Press, Honolulu, Hawaii. pp. 609.

Hsu, C. C. 1975. Gramineae. In: Li, H. L. et al. (eds.), Flora of Taiwan, 661-662, Vol. 6, Taiwan. pp. 661-662.

Joaquin-Ramos, A., J.A. Huerta-Ocampo, A. Barrera-Pacheco, A. De Leon-Rodriguez, S. Baginsky, S. and A.P. Barba de la Rosa. 2014. Comparative proteomic analysis of amaranth mesophyll and bundle sheath chloroplasts and their adaptation to salt stress. J. Plant Physiol. 171(15): 1423-1435.
DOI: 10.1016/j.jplph.2014.06.006View ArticleGoogle Scholar

Kamal, A.H., K. Cho, D.E. Kim, N. Uozumi, K.Y. Chung, S.Y. Lee, J.S. Choi, S.W. Cho, C.S. Shin and S.H. Woo. 2012. Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol. Biol. Rep. 39(9): 9059-9074.
DOI: 10.1007/s11033-012-1777-7View ArticleGoogle Scholar

Kao, P., T.Y. Wu, C.L. Chang, C.H. Chou and I.F. Chang. 2011. Decreasing of population size of Imperata cylindrica mangrove ecotype & sea-level rising. In: Casalegno, S. (ed.), Global warming impacts - case studies on the economy, human health, and on urban and natural environments. InTech.
DOI: 10.5772/24326View ArticleGoogle Scholar

Kosov?, K., P. Vitamv?s and I.T. Pr??il. 2014. Proteomics of stress responses in wheat and barley-search for potential protein markers of stress tolerance. Front. Plant Sci. 5: 711.
DOI: 10.3389/fpls.2014.00711View ArticleGoogle Scholar

Kumar, M., M.A. Sheikh and R.W. Bussmann. 2011. Ethnomedicinal and ecological status of plants in Garhwal Himalaya, India. J Ethnobiol. Ethnomed. 7(1): 32.
DOI: 10.1186/1746-4269-7-32View ArticleGoogle Scholar

Lv, D.W., S. Subburaj, M. Cao, X. Yan, X. Li, R. Appels, D. F. Sun, W. Ma and Y.M. Yan. 2014. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Mol. Cell. Proteomics 13(2): 632-652.
DOI: 10.1074/mcp.M113.030171View ArticleGoogle Scholar

Marivet J., M. Margis-Pinheiro, P. Frendo and G. Burkard. 1994. Bean cyclophilin gene expression during plant development and stress conditions. Plant Mol. Biol. 26(4): 1181-1189.
DOI: 10.1007/BF00040698View ArticleGoogle Scholar

Matsunaga, K., M. Shibuya and Y. Ohizumi. 1994. Cylindrene, a novel sesquiterpenoid from Imperata cylindrica with inhibitory activity on contractions of vascular smooth muscle. J. Nat. Prod. 57(8): 1183-1184.
DOI: 10.1021/np50110a010View ArticleGoogle Scholar

Nanjo, Y., M.Z. Nouri and S. Komatsu. 2011. Quantitative proteomic analyses of crop seedlings subjected to stress conditions; a commentary. Phytochemistry 72(10): 1263-1272.
DOI: 10.1016/j.phytochem.2010.10.017View ArticleGoogle Scholar

Ndimba, B.K., S. Chivasa, W.J. Simon and A.R. Slabas. 2005. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5(16): 4185-4196.
DOI: 10.1002/pmic.200401282View ArticleGoogle Scholar

Ngara, R., R. Ndimba, J. Borch-Jensen, O.N. Jensen and B. Ndimba. 2012. Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. J. Proteomics 75(13): 4139-4150.
DOI: 10.1016/j.jprot.2012.05.038View ArticleGoogle Scholar

Nouri, M. Z., A. Moumeni and S. Komatsu. 2015. Abiotic stresses: Insight into gene regulation and protein expression in photosynthetic pathways of plants. Int. J. Mol. Sci. 16(9): 20392-20416.
DOI: 10.3390/ijms160920392View ArticleGoogle Scholar

Perkins, D.N., D.J.C. Pappin, D.M. Creasy and J.S. Cottrell. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18): 3551-3567.
DOI: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2View ArticleGoogle Scholar

Razavizadeh, R., A.A. Ehsanpour, N. Ahsan and S. Komatsu. 2009. Proteome analysis of tobacco leaves under salt stress. Peptides 30(9): 1651-1659.
DOI: 10.1016/j.peptides.2009.06.023View ArticleGoogle Scholar

Rig?, G., I. Valkai, D. Farago, E. Kiss, S. Van Houdt, N. Van de Steene, M.A. Hannah and L. Szabados, L. 2016. Gene mining in halophytes: Functional identification of stress tolerance genes in Lepidium crassifolium. Plant, Cell Environ. 39(9): 2074-2084.
DOI: 10.1111/pce.12768View ArticleGoogle Scholar

Ruan, S.L., H.S. Ma, S.H. Wang, Y.P. Fu, Y. Xin, W.Z. Liu, F. Wang, J.X. Tong, S.Z. Wang and H.Z. Chen. 2011. Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol. 11(1):34.
DOI: 10.1186/1471-2229-11-34View ArticleGoogle Scholar

Sage, R.F., T.L. Sage and F. Kocacinar. 2012. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63(1): 19-47.
DOI: 10.1146/annurev-arplant-042811-105511View ArticleGoogle Scholar

Seidler, A. 1996. The extrinsic polypeptides of photosystem II. Biochim. Biophys. Acta 1277(1-2): 35-60.
DOI: 10.1016/S0005-2728(96)00102-8View ArticleGoogle Scholar

Sekhar, K., B. Priyanka, V.D. Reddy and K.V. Rao. 2010. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Plant Cell Environ. 33: 1324-1338.
DOI: 10.1111/j.1365-3040.2010.02151.xView ArticleGoogle Scholar

Shinozaki, K. and K. Yamaguchi-Shinozaki. 2007. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58(2): 221-227.
DOI: 10.1093/jxb/erl164View ArticleGoogle Scholar

Silveira, J.A.G. and F.E.L. Carvalho. 2016. Proteomics, photosynthesis and salt resistance in crops: An integrative view. J Proteomics 143: 24-35.
DOI: 10.1016/j.jprot.2016.03.013View ArticleGoogle Scholar

Silveira, J. A.G., A.R.B. Melo, R.A. Viegas and J.T.A. 2001. Salinity-induced effects on nitrogen assimilation related to growth in cowpea plants. Environ. Exp. Bot. 46(2): 171-179.
DOI: 10.1016/S0098-8472(01)00095-8View ArticleGoogle Scholar

Slama, I., C. Abdelly, A. Bouchereau, T. Flowers and A. Savoure. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115(3): 433-447.
DOI: 10.1093/aob/mcu239View ArticleGoogle Scholar

Song, Y., C. Zhang, W. Ge, Y. Zhang, A.L. Burlingame and Y. Guo. 2011. Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. J. Proteomics 74(7): 1045-1067.
DOI: 10.1016/j.jprot.2011.03.009View ArticleGoogle Scholar

Sripanidkulchai, B., V. Wongpanich, P. Laupattarakasem, J. Suwansaksri and D. Jirakulsomcho. 2001. Diuretic effects of selected Thai indigenous medicinal plants in rats. J. Ethnopharmacol. 75(2-3): 185-190.
DOI: 10.1016/S0378-8741(01)00173-8View ArticleGoogle Scholar

Sugihara, K., N. Hanagata, Z. Dubinsky, S. Baba and I. Karube. 2000. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol. 41(11): 1279-1285.
DOI: 10.1093/pcp/pcd061View ArticleGoogle Scholar

Tanaka, Y., T. Hibino, Y. Hayashi, A. Tanaka, S. Kishitani, T. Takabe, S. Yokota and T. Takabe. 1999. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci. 148(2): 131-138.
DOI: 10.1016/S0168-9452(99)00133-8View ArticleGoogle Scholar

Torabi, S., M. Wissuwa, M. Heidari, M.R. Naghavi, K. Gilany, M.R. Hajirezaei, M. Omidi, B. Yazdi-Samadi, A.M. Ismail and G.H. Salekdeh. 2009. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics 9(1): 159-170.
DOI: 10.1002/pmic.200800350View ArticleGoogle Scholar

Tsai, C.C. and C.H. Chou. 1999. Sequence of a 5.8s rRNA gene and internal transcribed spacer (ITS) from Imperata cylindrica var. major. J. Genet. Mol. Biol. 10(2): 41-47.
DOI: 10.30047/JGMB.199906.0001View ArticleGoogle Scholar

Wadsworth, G.J. 1997. The plant aspartate aminotransferase gene family. Physiol. Plant. 100(4): 998-1006.
DOI: 10.1034/j.1399-3054.1997.1000428.xView ArticleGoogle Scholar

Wang, L., W. Liang, J. Xing, F. Tan, Y. Chen, L. Huang, C.L. Cheng and W. Chen. 2013. Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce. J. Proteome Res. 12(11): 5124-5136.
DOI: 10.1021/pr4006469View ArticleGoogle Scholar

Wu, T.C. and W.Y. Kao. 2011. Ecophysiological traits of leaves of three Marsilea species distributed in different gengraphical regions. Taiwana 56(4): 279-286.
DOI: 10.6731/TPCC_proceedings.003b-002-R1-00009546View ArticleGoogle Scholar

Wu, T.Y., P. Kao, C.L. Chang, P.H. Hsu, C.H. Chou and I.F. Chang. 2015. Phosphoproteomic profiling of microsomal fractions in leaves of Cogon grass (Imperata cylindrica). Plant OMICS J. 8: 595-603.

Yoon, J.S., M.K. Lee, S.H. Sung and Y.C. Kim. 2006. Neuroprotective 2-(2-phenylethyl) chromones of Imperata cylindrica. J. Nat. Prod. 69(2): 290-291.
DOI: 10.1021/np0503808View ArticleGoogle Scholar

Zhang, H., B. Han, T. Wang, S. Chen, H. Li, Y. Zhang and S. Dai. 2012. Mechanisms of plant salt response: Insights from proteomics. J. Proteome Res. 11(1): 49-67.
DOI: 10.1021/pr200861wView ArticleGoogle Scholar

Zhao, Q., S. Chen and S. Dai. 2013a. C4 photosynthetic machinery: Insights from maize chloroplast proteomics. Front. Plant Sci. 4: 85.
DOI: 10.3389/fpls.2013.00085View ArticleGoogle Scholar

Zhao, Q., H. Zhang, T. Wang, S. Chen and S. Dai. 2013b. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J. Proteomics 82: 230-253.
DOI: 10.1016/j.jprot.2013.01.024View ArticleGoogle Scholar

Zhu, J.K. 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6(5): 441-445.
DOI: 10.1016/S1369-5266(03)00085-2View ArticleGoogle Scholar

Z?rb, C., R. Herbst, C. Forreiter and S. Schubert. 2009. Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9(17): 4209-4220.
DOI: 10.1002/pmic.200800791View ArticleGoogle Scholar

Z?rb, C., S. Schmitt and K.H. Muhling. 2010. Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10(24): 4441-4449.
DOI: 10.1002/pmic.201000231View ArticleGoogle Scholar